determinati nr real x stiind ca x/2√3=8√3/x

Răspuns:
[tex]\dfrac{x}{2 \sqrt{3} }=\dfrac{8 \sqrt{3} }{x} \implies x \cdot x= 2 \sqrt{3}\cdot 8\sqrt{3} [/tex]
[tex]x^{2} = 16 \sqrt{3}\cdot \sqrt{3} [/tex]
[tex]x^{2} = 16\cdot3[/tex]
[tex]x^{2} = 48 \implies x = \pm \sqrt{48} \implies[/tex]
[tex]x = \pm 4\sqrt{3} \implies [/tex]
[tex] \red{x_{1} = + \: 4\sqrt{3} }[/tex]
[tex] \red{x_{2} = - \: 4\sqrt{3} }[/tex]
[tex]\it \dfrac{x}{\ \ 2\sqrt3}=\dfrac{8\sqrt3}{x}\Big|_{\cdot\sqrt3} \Rightarrow \dfrac{x}{2}=\dfrac{24}{x}\Rightarrow x^2=48 \Rightarrow \sqrt{x^2}=\sqrt{48} \Rightarrow \\ \\ \\ \Rightarrow |x|=\sqrt{16\cdot3} \Rightarrow x=\pm4\sqrt3 \Rightarrow x_1=-4\sqrt3,\ \ x_2=4\sqrt3.[/tex]