👤

- Pe un rând sunt scrise opt numere întregi negative care satisfac condiţia că, începând cu altele
număr, fiecare dintre ele este egal cu suma celor două din fața lui, Aflaţi
ştiind că al cincilea dintre ele este –9.
suma celor opt numere,


Răspuns :

Răspuns:

-486/5

Explicație pas cu pas:

notăm numerele:

a b c d e f g h

e = -9

b = a

c = a + b = 2a

d = b + c = 2a + a = 3a

e = c + d = 3a + 2a = 5a

f = d + e = 5a + 3a = 8a

g = e + f = 5a + 8a = 13a

h = f + g = 8a + 13a = 21a

e = 5a = -9 => a = -9/5

S = a + b + c + d + e + f + g + h = a + a + 2a + 3a + 5a + 8a + 13a + 21a = 54a = - 9×54/5 = - 486/5

a = -9/5

b = -9/5

c = -18/5

d = -27/5

e = -9

f = -72/5

g = -117/5

h = -189/5

(observație: fiecare număr Fibonacci este suma celor două numere Fibonacci anterioare)