👤

Test 20
1. Se consideră funcția f:RŐR, S(x) = 2x* - 4x2 -3.
a) Arătaţi că f'(x)= 8x(x - 1)(x+1), XER.
b) Determinați ecuația tangentei la graficul funcțieis in punctul de abscisă x=1, situat pe graficul
funcţiei f.
c) Demonstrați că -55 S(x) 5-3, pentru orice x€ (-1,1]


Test 20 1 Se Consideră Funcția FRŐR Sx 2x 4x2 3 A Arătaţi Că Fx 8xx 1x1 XER B Determinați Ecuația Tangentei La Graficul Funcțieis In Punctul De Abscisă X1 Situa class=

Răspuns :

Explicație pas cu pas:

a)

[tex]f(x) = 2 {x}^{4} - 4 {x}^{2} - 3[/tex]

[tex]f'(x) = (f(x))' = (2 {x}^{4} - 4 {x}^{2} - 3)' = (2 {x}^{4})' - (4 {x}^{2})' - (3)' = 2({x}^{4})' - 4({x}^{2})' - (3)' = 8 {x}^{3} - 8x = 8x( {x}^{2} - 1)[/tex]

[tex] = > f'(x) = 8x(x - 1)(x + 1) [/tex]

b) ecuația tangentei:

[tex]y-f(x_{0})=f'(x_{0})(x-x_{0})[/tex]

[tex]x_{0} = 1[/tex]

[tex]f(1) = 2 - 4 - 3 = - 5 \\ f'(1) = 0[/tex]

[tex]y - ( - 5) = 0(x - 1) \\ y + 5 = 0 = > y = - 5[/tex]

c)

[tex]f'(x) = 0 = > 8x(x - 1)(x + 1) = 0 \\ x = - 1;x = 0;x = 1[/tex]

intervale de monotonie:

[tex]f'(x) < 0; - \infty < x < - 1 \\ f'(x) > 0; - 1 < x < 0 \\f'(x) < 0;0 < x < 1 \\ f'(x) > 0;1 < x < + \infty [/tex]

[tex]f( - 1) = 2( - 1)^{4} - 4 {( - 1)}^{2} - 3 = 2 - 4 - 3 = - 5[/tex]

=> minim (-1;-5)

[tex]f(0) = 2(0)^{4} - 4 {(0)}^{2} - 3 = - 3[/tex]

=> maxim (0; -3)

[tex]f(1) = 2(1)^{4} - 4 {(1)}^{2} - 3 = 2 - 4 - 3 = 5[/tex]

=> minim (1;-5)

[tex]=> - 5 \leqslant f(x) \leqslant - 3, - 1 \leqslant x \leqslant 1[/tex]

Explicație pas cu pas:

Succes! Sper sa înțelegi scrisul!

Vezi imaginea DARIACORINA5