👤

Se consideră matricele [tex]$A=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right), B(x)=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$[/tex] şi [tex]$C(x)=\left(\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right)$[/tex], unde [tex]$x$[/tex] este număr real.

5p 1. Arătați că [tex]$\operatorname{det} A=3$[/tex].

5p 2. Determinați numărul real [tex]$x$[/tex] pentru care [tex]$C(x) \cdot B(x)=A$[/tex].

5p 3. Arătați că [tex]$C(x) \cdot B(x)-B(x) \cdot C(x)=\left(\begin{array}{cc}x^{2} & 0 \\ 2 x & -x^{2}\end{array}\right)$[tex], pentru orice număr real [tex][tex][tex][tex][tex]$x$[tex][tex][tex][tex][tex].

5p 4. Pentru [tex]$x=0$[/tex], determinați matricea [tex]$X \in \mathcal{M}_{2}(\mathbb{R})$[/tex] pentru care [tex]$X \cdot B(x)=A \cdot C(x)$[/tex].

5p 5. Demonstrați că, pentru orice număr întreg [tex]$x$[/tex], matricea [tex]$C(x)$[/tex] este inversabilă.

5p 6. Determinatii numerele naturale [tex]$x$[/tex] pentru care det [tex]$(B(x)+C(x))\ \textgreater \ 0$[/tex].


Răspuns :

[tex]A=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)[/tex]

[tex]B(x)=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)[/tex]

[tex]C(x)=\left(\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right)[/tex]

1)

Aratati ca detA=3

Facem diferenta dintre produsul diagonalelor

detA=3-0=3

2)

C(x)·B(x)=A

[tex]C(x)\cdot B(x)=\left(\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right)\cdot \left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)=\left(\begin{array}{ll}1 +x^2& x \\ 2+3x & 3\end{array}\right)[/tex]

[tex]\left(\begin{array}{ll}1 +x^2& x \\ 2+3x & 3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)[/tex]

x=0

3)

[tex]C(x)\cdot B(x)=\left(\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right)\cdot \left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)=\left(\begin{array}{ll}1 +x^2& x \\ 2+3x & 3\end{array}\right)[/tex]

[tex]B(x)\cdot C(x)=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)\cdot \left(\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right)=\left(\begin{array}{ll}1& x \\ x+2& x^2+3\end{array}\right)[/tex]

[tex]C(x)\cdot B(x)-B(x)\cdot C(x)=\left(\begin{array}{ll}1 +x^2& x \\ 2+3x & 3\end{array}\right)-\left(\begin{array}{ll}1 & x \\ x+2 & x^2+3\end{array}\right)=\left(\begin{array}{ll}x^2&0 \\ 2x & -x^2\end{array}\right)[/tex]

4)

x=0

X·B(x)=A·C(x)

X·B(0)=A·C(0)

Observam ca B(0)=I₂

⇒X=A·C(0)

[tex]X=A\cdot C(0)=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)\cdot \left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 8 & 9\end{array}\right)[/tex]

5)

Matricea C(x) este inversabila daca det(C(x)) este diferit de zero

det(C(x))=3-2x

3-2x=0

3=2x

[tex]x=\frac{3}{2}\notin Z[/tex]⇒ 3-2x≠0⇒ matricea C(x) este inversabila

6)

det(B(x)+C(x))>0

[tex]B(x)+C(x)=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)+ \left(\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right)=\left(\begin{array}{ll}2& x \\ x+2& 4\end{array}\right)[/tex]

[tex]\left|\begin{array}{ll}2& x \\ x+2& 4\end{array}\right|=8-x^2-2x[/tex]

-x²-2x+8>0

Δ=4+32=36

[tex]x_1=\frac{2+6}{-2} =-4\\\\x_2=\frac{2-6}{-2} =2[/tex]

x                   -∞        -4        2         +∞

-x²-2x+8      - - - - - - 0 + + +0 - - - - -

x∈(-4,2), dar x∈N⇒ x={0,1}

Un alt exercitiu cu matrice gasesti aici: https://brainly.ro/tema/9905506

#BAC2022

#SPJ4