👤

In rombul ABCD,BD=24radical din 2 cum și m(ADC)=120.CALULATI LUNGIMEA DIAGONALEI AC SI PERIMETRUL
ROMBULUI



Răspuns :

Explicație pas cu pas:

ABCD romb, BD = 24√2 cm

BD ∩ AC = {O}

m(∢ADC) = 120° => m(∢BAD) = 60°

=> ΔABD este echilateral

=> AB = BD = 24√2 cm

AO este înălțime în ΔABD

AC = 2×AO

[tex]AC = 2\cdot \frac{AB \sqrt{3}}{2} = 24 \sqrt{2}\cdot  \sqrt{3} \\ = > AC = 24 \sqrt{6} \: cm[/tex]

perimetrul:

[tex]P = 4\cdot AB = 4\cdot 24 \sqrt{2} = 96 \sqrt{2} \: cm \\ [/tex]