Explicație pas cu pas:
[tex]in \: prima \: zi \\ s - \frac{2s}{3} + 2 = \frac{3s - 2s + 6}{3} = \frac{s + 6}{3} \\ primul \: rest \\ s - \frac{s + 6}{3} = \frac{3s - s + 6}{3} = \frac{2s + 6}{3} \\ a \: doua \: zi \\ primul \: rest \: \times \frac{1}{4} + 1 = \frac{2s + 6}{3} \times \frac{1}{4} + 1 = \frac{2s + 6}{12} + 1 = \frac{s + 3}{6} + 1 = \frac{s + 3 + 6}{6} = \frac{s + 9}{6} \\ al \: doilea \: rest \\ primul \: rest \: - a \: doua \: zi = \frac{2s + 6}{3} - \frac{s + 9}{6} = \frac{4s + 12 - s - 9}{6} = \frac{3s + 3}{6} = \frac{s + 1}{2} = a \: treia \: zi = 14 < = > \frac{s + 1}{2} = 14 < = > s + 1 = 28 < = > s = 27[/tex]