👤

Aceste exerciții.Vă mulțumesc anticipat !​

Aceste ExercițiiVă Mulțumesc Anticipat class=

Răspuns :

Răspuns:

a) Folosind proprietățile logaritmilor se obține

[tex]\lg\sqrt{xy}\le\lg\frac{1}{2}\Rightarrow\sqrt{xy}\le\frac{x+y}{2}[/tex], inegalitate adevărată

b) Avem [tex]y=1-x[/tex]. Atunci inegalitatea devine succesiv

[tex]\x\lg x+(1-x)\lg(1-x)\ge\frac{1}{2}\lg x+\frac{1}{2}\lg(1-x)[/tex]

[tex]x\lg x+\lg(1-x)-x\lg(1-x)-\frac{1}{2}\lg x-\frac{1}{2}\lg(1-x)\ge 0[/tex]

[tex]\displaystyle\left(x-\frac{1}{2}\right)(\lg x-\lg(1-x))\ge 0[/tex]

Dacă [tex]x\in\left(0,\displaystyle\frac{1}{2}\right)[/tex] atunci ambele paranteze sunt negative, deci produsul lor este pozitiv.

Dacă [tex]x\in\left[\displaystyle\frac{1}{2},1\right)[/tex] atunci ambele paranteze sunt pozitive, deci produsul este pozitiv.

Deci inegalitatea este adevărată.

Explicație pas cu pas:

Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, vă rugăm să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la lista de favorite!


Ze Learners: Alte intrebari