Răspuns :
Explicație pas cu pas:
a)
[tex](x - { \sqrt{11} })^{2} = {x}^{2} - 2 \sqrt{11}x + 11 [/tex]
[tex](x - { \sqrt{11} })^{2} = 0 \implies x = \sqrt{11} [/tex]
b)
[tex]( - x - \sqrt{11} )^{2} = {x}^{2} + 2 \sqrt{11} x + 11[/tex]
[tex]( - x - \sqrt{11} )^{2} = 0[/tex]
[tex]- x - \sqrt{11} = 0 \implies x = - \sqrt{11} [/tex]
c)
[tex]( - x + \sqrt{11} )^{2} = {x}^{2} - 2 \sqrt{11}x + 11[/tex]
[tex]( - x + \sqrt{11} )^{2} = 0[/tex]
[tex]- x + \sqrt{11} = 0 \implies x = \sqrt{11} [/tex]
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Sperăm că informațiile prezentate v-au fost utile. Dacă aveți întrebări sau aveți nevoie de suport suplimentar, vă rugăm să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la lista de favorite!